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Abstract— With the increasing importance of data analytics
and its corresponding relevance for many different fields of
applications, consistent approaches for analysing, mining and
learning from contextual observations expressed in form of data
have taken centre stage in the computational area of data science
and analytics. In this paper, we examine basic theoretical concepts
associated with statistical and probabilistic learning theory that
are utilized for solving regression and classification tasks in a
mathematical context. For this purpose, we provide an overview
of the principal functionalities and the mathematical derivation
of such learning concepts and discuss the underlying linear
approaches that are employed by state-of-the-art supervised
learning algorithms. In doing so, we focus on both the abstract
description as well as the illustration of such concepts by
providing examples of common linear algorithms that are used
for supervised classification and regression tasks.

Index Terms— statistical learning theory, linear regression,
linear classification, maximum likelihood estimation, bayesian
statistics, ridge regression, probabilistic generative models, prob-
abilistic discriminative models, logistic regression

I. INTRODUCTION

The concept of linear models for regression and classifi-
cation resides in the centre of statistical learning theory. The
principal idea of linear models and their application in the
area of data science and artificial intelligence is derived from
their initial establishment in the field of statistics, where linear
regression models play an essential role in predictive analysis
scenarios. Describing the concepts and the functionality of
linear models for learning applications therefore requires the
creation of a mathematical notion for how these concepts
acquire the ability to learn from data and to make predictions
for future observations. In the course of this paper, we focus
on the illustration of linear models for the regression and the
classification of feature vectors that are applied on trained
functions aiming to predict certain patterns from the character-
istics of given data. In order to establish a solid foundation of
the mathematical concepts provided in this paper, the central
terms regression and classification need to be defined and
differentiated.

Regression is a statistical term that describes a technique for
estimating model parameters using a given amount of data in
order to optimize the parameters such that they approximate
the given data in an optimal way. This is achieved by modeling

the relationship between a dependent variable and one or more
explanatory variables [7].

Rather than optimizing parameters to approximate an es-
timation expression for a given amount of data, the concept
of classification in this statistical context comprises the cate-
gorisation of given observations into predefined classes. The
classification is based on previous observations and therefore
the concept aims to train a mathematical function such that
the probability or likelihood for a given observation belonging
to the assigned class is maximized. The terms probability
and likelihood are two central aspects when dealing with
classification algorithms as each of them represents a distinct
characterization of the models that are used to solve the
problem of classification.

Both linear classification and regression find broad appli-
cations in research and industry and are used in a variety
of disciplines and scientific fields, ranging from linguistic
research such as text or document classification (e.g. [12]) to
biological and medical applications dealing with topics such
as cancer research (e.g. [9]). One particular class of linear
classification models, the support vector machine classifiers
[16], are widely-used in contemporary research scenarios
related to image recognition and classification (e.g. [4]). Linear
regression algorithms find numerous applications in research
dealing with financial predictions and analyses such as stock
market forecasting (e.g. [2]). However, the main goal of this
paper is to provide a mathematical overview of the basic
concepts associated with linear classification and regression
tasks and does therefore not discuss the application of the
illustrated approaches in the context of a specific scenario.

The rest of this paper is structured as follows: first, we pro-
vide an overview of and insight into the theoretical description
and mathematical derivation of linear models for regression
problems in section II. This part covers both the description
of the theoretical concepts as well as an examination of
related approaches illustrating the realization of such concepts.
Section III then provides a mathematical examination of linear
approaches for classification and undermines the theoretical
concepts with an example for a common linear classification
method, the logistic regression algorithm. Finally, we conclude
our main findings and provide a summary of this paper’s
principal subjects in section IV.



II. LINEAR MODELS FOR REGRESSION

The initial conceptual background of linear models for
regression analyses is based on the statistical concept of linear
regression. Given an (M − 1)-dimensional input vector x =
{x1, ..., xM−1}, linear regression uses a predefined weight
vector w = {w0, ..., wM−1} such that

y(x,w) = w0 + w1x1 + · · ·+ wM−1xM−1, (1)

where the output y(x,w) denotes the approximated value
based on the weighted inputs. This model is called linear
regression as it utilizes a linear combination of the given input
variables xi. However, considering the weight parameters wi

as simple variables implies a significant limitation on the
model as in this case equation (1) simply describes a linear
function that approximates the given input data using the
weight parameters wi [5].

(a) Approximation with a 1st-order
polynomial.

(b) Approximation with a 2nd-order
polynomial.

(c) Approximation with a 6th-order
polynomial.

(d) Approximation with an 8th-order
polynomial.

Fig. 1: Polynomial approximation for a sample of n = 9 data
points with four different polynomials. The figure shows that a higher
polynomial degree increases the approximation accuracy, but also
overfits the training data.

Hence, this model needs to be extended such that the linear
combination of inputs is extended by a set of non-linear func-
tions φ weighted with the parameters w = {w0, ..., wM−1},
leading to

y(x,w) = w0 +

M−1∑
j=1

wjφj(x) = w>φ(x), (2)

where M denotes the total number of parameters of the model
and φ = (φ0, ..., φM−1)

> describes an M -dimensional vector
of non-linear functions. Here φ0(x) = 1 conventionally holds
for all inputs x.
The non-linear functions φj are known as basis functions and
allow the model y(x,w) to be a linear combination of non-
linear functions. The parameter w0 serves as a fixed offset and
is often referred to as the bias parameter [5].

In order to illustrate this basic model with an example we
refer to the concept of polynomial regression, where a given
function is approximated using a polynomial of degree M −1
[5]. Using equation (2) this can be achieved by choosing the
basis functions φj(x) = xj . Figure 1 shows an example of
a polynomial regression for n = 9 data points. Subfigures
(c) and (d) clearly illustrate that the higher the polynomial
degree, the better the approximation. Nonetheless, the figure
also illustrates that polynomials whose degree is close or equal
to the total amount of the given data points tend to overfit the
approximation. Another decisive disadvantage of polynomial
regression is that the φj are global functions of the input
variables and hence changes in one input region automatically
affect all the other regions [13].

A. Sum of least squares
Equations (1) and (2) raise the question of how to choose

the optimal weight parameters wj with j ∈ {0, ...,M −1} for
a given approximation problem. A widely-used approach is the
method of least squares. Let xi with i ∈ {1, ..., N} denote a
vector of feature measurements and let zi be the given target
values. The method then aims to minimize the residual sum
of squares (RSS) by optimizing the wj such that

RSS(w) =

N∑
i=1

(zi − y(xi,w))2

=

N∑
i=1

zi − w0 −
M−1∑
j=1

xijwj

2

is minimized. RSS assumes the target values zi to be approx-
imated by y(xi,w). Hence the target values can be expressed
as

zi = y(xi,w) + ε, (3)

where ε denotes Gaussian noise1 representing the approxi-
mation error [5]. However, in order to solve RSS(w), the
expression can be simplified by introducing an N ×M matrix
X representing each input vector xi as a row, where xi0 = 1.
Employing this matrix adjusts the residual sum of squares such
that

RSS(w) = (z−Xw)>(z−Xw), (4)

where z denotes an N -dimensional vector of target values.
Now we can minimize this function by computing the first
and second derivatives of equation (4) with respect to w:

∂RSS

∂w
= −2X>(z−Xw)

∂2RSS

∂w∂w>
= 2X>X

and by setting the first derivative to zero and solving for w
we get

ŵ = (X>X)−1X>z, (5)

with ŵ denoting the weight parameters that minimize RSS.
Equation (5) assumes X>X to be positive definite which is

1In statistical terminology, noise is a measure for the unconsidered variance
of a given amount of data. Gaussian noise therefore means that the statistical
noise follows a Gaussian distribution.



the case if and only if X has full column rank. In case X>X is
singular ŵ would not be clearly defined. This mostly occurs in
cases where the given data inputs are redundantly designed,
and a common way to solve this is to adjust or delete the
redundant columns in X [10].

B. Maximum likelihood estimation (MLE)

A commonly used technique for estimating the weight
parameters of a statistical linear model is called maximum
likelihood estimation (MLE). MLE was firstly introduced and
developed by Fisher in 1922 and is considered as ”one of
the most important developments in 20th century statistics”
[1]. The concept comprises the optimization of the model
parameters such that the likelihood of a computed prediction
based on given observations and the model parameters is
maximized. In its most basic form, MLE is defined as follows.
Let D = {x1, . . . ,xN} denote a given dataset and w the
parameters of our given model. Then

ŵ , argmax
w

log p(D |w) (6)

describes the maximum likelihood estimation of the given
model. The equation aims to find the set of parameters w
maximizing the probability that our model approximates D
with w. A helpful characteristic used in the mathematical
field of probability theory that finds strong application in this
method is the consideration of independent and identically
distributed events. This concept assumes all given probabilistic
events to be independent and to follow an identical probability
distribution [13], and hence

p(D |w) =

N∏
i=1

p(zi |xi,w) (7)

holds for the given target values zi. Using the strictly mono-
tonic characteristic of the log function2, we can simplify this
equation such that

log p(D |w) =

N∑
i=1

log p(zi |xi,w).

However, it is common to consider the negative log likeli-
hood (NLL) instead of the positive and minimze this expres-
sion instead of maximizing the positive one. This approach is
motivated by the fact that many optimization software pack-
ages are designed to minimize functions instead of maximizing
them [13]. Therefore, our final likelihood estimation is

NLL(w) , −
N∑
i=1

log p(zi |xi,w).

When applying MLE to our initial situation described in
equation (7), we are interested in maximizing p(z |x,w), i.e.
the probability of approximating the target values z with our
weights w and the given input vectors x. In section II-A we

2This characteristic implies that the argmax does not change when
applying the log to a given function.

assumed the noise ε of our linear model to follow a Gaussian
distribution. Therefore,

p(z |x,w, β) = N (z | y(x,w), β−1) (8)

holds for our initial problem, where N denotes the Gaussian
distribution function with the inverse variance β [5]. For a
set of input vectors X = {x1, ...,xN} and the corresponding
target values z = {z1, ..., zN} the probability equation results
in

p(z |X,w, β) =
N∏
i=1

N (zi |w>φ(xi), β
−1).

Applying the log in the same fashion as above leads to

log p(z |X,w, β) =
N∑
i=1

logN (zi |w>φ(xi), β
−1)

=
N

2
· log β − N

2
· log(2π)− β · E(w),

with E(w) denoting a measurement function for the prediction
error [5] which is defined as

E(w) =
1

2

N∑
i=1

(zi −w>φ(xi))
2. (9)

The gradient of this log likelihood function can then be
described as

∇ log p(z |X,w, β) = β ·
N∑
i=1

(zi −w>φ(xi)) · φ(xi)
>

and setting the gradient to zero and solving for w results in

wML = (Φ>Φ)−1Φ>z, (10)

where wML denotes the optimized vector of parameters for a
given model (i.e. the weight vector for which the likelihood
of approximating the given dataset D is maximized) and Φ is
called the design matrix described as

Φ =


φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

...
...

. . .
...

φ0(xN ) φ1(xN ) . . . φM−1(xN )

 .

Equation (10) is referred to as the normal equation for the
least squares problem [5].

C. Regularization using ridge regression

Regression models have shown to entail a certain degree
of being unsatisfactory when its parameters are estimated by
the discussed residual sum of squares model as this approach
tends to overfit the training data [11]. A common way to
prevent linear models from overfitting the input data is by
adding a regularization term that aims to compensate the
biased prediction.
A known technique for minimizing the residual sum of squares
whilst reducing the degree of overfitting is called ridge re-
gression. To our knowledge, the term ridge regression and its



corresponding concept were initially presented by Hoerl and
Kennard [11] in 1970. In its basic idea, the approach consists
of adding the sum of squares of the model’s weight parameters

λ

2
||w||22 (11)

as a regularization term, where ||w||22 =
∑

j w
2
j = w>w and

λ denotes a weight for the regularization term that controls
the regularizer’s relevance with regards to the model’s error
function. Adding this term to the error function E(w) as
described in section II-B results in the combination of equation
(9) and equation (11) such that

ER(w) =
1

2

N∑
i=1

(zi −w>φ(xi))
2 +

λ

2
||w||22 (12)

denotes the regularized total error function [5]. Equation
(12) now clearly illustrates that the added regularization term
penalizes the model’s error function. Assume our trained
model overfits the training data, and the optimized weight
parameters result in large values. Then the sum of squares
of the weight parameters impacts the model’s total error
function in a way such that the minimized error (which is
expected to be small due to the overfitting) is penalized. The
regularization term then represents a relatively large value and
thus has a substantial impact on the error minimization and
the corresponding optimized weight parameters. On the other
hand, if the model does not overfit the training data and the
weight parameters are expected to be relatively small, then
the regularization term does not influence the model’s total
error function in such a decisive manner and the optimal
weight parameters are mainly determined by the model’s sum
of squares function.

In order to determine the optimal weight parameters for the
regularized model, equation (12) is solved in the same fashion
as in section II-B, leading to the weight parameter optimization
function

ŵridge = (λI + Φ>Φ)−1Φ>z, (13)

where I denotes the identity matrix.
Equation (13) illustrates the impact of the weight term λ in

the context of this regularization approach. In comparison to
the parameter optimization solution described in equation (10)
in section II-B, adding the λ to the parameter optimization
function in this regularization approach results in a higher
likelihood of (λI + Φ>Φ) being invertible compared to
Φ>Φ [13]. Furthermore, utilizing this particular regularizer
described in equation (11) has the decisive advantage that
the corresponding error is still a quadratic function such
that its minimization term can be specified in closed form.
In a statistical terminology, this regularizer demonstrates an
example of a parameter shrinkage method as it aims to
decrease the parameters towards zero [5].

III. LINEAR MODELS FOR CLASSIFICATION

Contrary to the models described in the previous section,
linear models for classification are trained on discrete datasets

Fig. 2: Illustration of a 3-class-discriminant function. The decision
boundaries are always connected, making it impossible to find regions
that are not assigned to a predefined class. The figure also shows
the correlation between equation (16) and the corresponding decision
boundary between two classes Cl and Cm.

and aim to categorize given data inputs into predefined classes.
This can be achieved by separating the given data into dif-
ferent regions that are characterized by the properties of the
data residing within the corresponding region. However, an
important characteristic of linear models for classification is
that their decision boundaries are described in a linear fashion
[10].

A. Discriminant functions

In order to categorize a given D-dimensional input vector
x of a given dataset D into one of k predefined classes
Ck, classification models utilize a set of functions called
discriminators. While there exist both linear and non-linear
discriminant functions, we limit our focus on linear discrim-
inant functions as those are the functions used for linear
classification models [5]. The simplest class of discriminators
classifies input vectors into one of two given classes Ci and
Cj using a linear discriminant function

y(x) = w>x + w0 (14)

with a vector of weight parameters w and w0 being a bias
parameter. Using equation (14), x is assigned to class Ci if
y(x) ≥ 0 and to class Cj instead. This implies that the given
decision boundary for the specified model is described by a
(D − 1)-dimensional hyperplane H with

H := {x ∈ D : y(x) = 0}.

An intuitive approach to extend the described concept to
k > 2 classes might be to employ k − 1 classifiers for
which each covers a separation between two classes. However,
in 1973 Duda and Hart ([8], cited in [5]) showed that this
given approach referred to as one-versus-the-rest classification
can result in classification problems because the decision
boundaries would always create an undefined region, i.e. a
region that does not belong to a predefined class.



Fig. 3: Illustration of a two-class classification problem where the
classes are not linearly separable. In this particular case, the function
φ (in red) serving as a decision boundary is φ : (x1, x2)

> 7→ (r ·
cos(x1), r · sin(x2))>, r ∈ R.

In order to prevent the model from facing such classification
difficulties we can utilize one single discriminant function
covering all k classes. This can be modeled by introducing
a discriminator yk(x) consisting of k linear functions

yk(x) = w>k x + wk0
. (15)

A given input vector x is then classified into a class Cj if
and only if yj(x) > yi(x) for all i 6= j. Hence the decision
boundary between two classes Ci and Cj is then modeled by
yj(x) = yi(x) which can be transformed such that

(wj −wi)
>x + wj0 − wi0 = 0. (16)

Figure 2 illustrates the k-class-discriminator for a classification
problem with k = 3. The decision boundaries are always
connected to each other which guarantees that the algorithm
assigns any input to a predefined class [5].
There exists a strong similarity between the two-class case
described in equation (14) and the multi-class case such that
the generalized approach applies for a two-class problem as
well.

However, it is often not the case that the data is clearly ar-
ranged such that categorizing the observations into predefined
classes is possible using a linear hyperplane. A common way
to solve this problem is to integrate a set of fixed non-linear
functions into the discriminant function so that the decision
boundaries can be modeled in a non-linear fashion.
Figure 3 illustrates an example of a given scenario where
the observations cannot be separated into their corresponding
classes by using a linear decision boundary. A widely-used
approach for selecting appropriate non-linear functions is by
employing a set of predefined basis functions as defined in
section II. The following approach relies on the idea of linearly
combining basis functions in order to provide a clear non-

linear separation of the given data.

B. The perceptron algorithm

A well-known model for providing a discriminant function
consisting of the linear combination of non-linear functions
for a two-class separation is called the perceptron algorithm,
introduced by Rosenblatt in 1958 [15]. The perceptron classi-
fies a given input vector x by firstly transforming it using a
vector of fixed non-linear functions φ(x) with φ0(x) = 1 for
the bias parameter w0. The resulting vector is then applied to
a generalized linear model

y(x) = f(w>φ(x)),

where f(t) is being referred to as the non-linear activation
function. This function then serves as the model’s classifier as
it maps a given input t to an output f(t) ∈ {−1, 1}, where
each element denotes a predicted class. Hence

f(t) =

{
+1 if t ≥ 0,

−1 otherwise.

The above model raises the question of how to identify the
optimal weight parameters w for the perceptron algorithm.
One approach to optimize these parameters is to apply an error
function that is referred to as the perceptron criterion [5],
which we will not discuss in detail in the course of this paper.

C. Probabilistic generative models

Instead of optimizing the weight parameters of given clas-
sification models, probabilistic generative models aim to learn
a classifier by optimizing the probability p(x, z) with x repre-
senting the given inputs and z their corresponding class labels.
The label with the highest probability for a given input is
then computed by applying Bayes’ theorem3 on the probability
p(z |x) [14]. In order to demonstrate the functionality of this
concept, we consider a classification problem consisting of
two classes C1 and C2. Given a set of data inputs x, we can
predict p(C1 |x) using Bayes’ theorem such that

p(C1 |x) =
p(x | C1)p(C1)

p(x | C1)p(C1) + p(x | C2)p(C2)

=
1

1 + e−a

= σ(a),

where
a = log

(
p(x | C1)p(C1)
p(x | C2)p(C2)

)
and σ describes the sigmoid function

σ(a) =
1

1 + e−a
. (17)

Based on the calculated probabilities it is then possible to
predict the class to which the given data input x most likely

3Bayes’ theorem: for a set of disjunct samples A1, ..., An and a given
sample B the probability p(Ai|B), i ∈ {1, ..., n} can be computed as
follows: p(Ai|B) =

p(B|Ai)·p(Ai)∑n
j=1 p(B|Aj)·p(Aj)

.
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Fig. 4: The sigmoid function σ (in red) ”squashes” a given input x
such that σ(x) ∈ (0, 1) holds for all x, making it possible to treat
the estimations like probabilistic values.

belongs to [5]. Figure 4 describes the sigmoid function σ and
shows how it maps a computed value to a value between zero
and one such that the computed result can be interpreted as a
probability.

In the case of a multi-class classification problem this
approach can be extended accordingly, leading to a logistic
sigmoid function that is generalized for a multi-class problem.
In the literature, this function is often referred to as normalized
exponential or softmax (e.g. [5]). However, in the course of
this paper we do not illustrate this approach in further detail.

D. Probabilistic discriminative models

In contrast to generative models, probabilistic discrimi-
native classifiers compute the probability posterior p(z |x)
directly instead of applying Bayes’ theorem. This approach
is motivated by the observation that the generative approach
generalizes the model as an intermediate step before solving
the actual problem ([16], cited in [14]). In the example
described in section III-C, computing p(x | z) would be such
an intermediate step towards generalizing the actual problem.

Furthermore, discriminative models typically do not contain
as many parameters that need to be specified as the generative
approach [5]. One disadvantage of discriminative models,
however, is that they require only little knowledge of how
the given amount of data is distributed and are therefore
considered as ”’black-box’ classifiers” [3].

In order to directly compute the class prediction with the
maximum likelihood estimation, discriminative models follow
the approach of maximizing a likelihood function that is de-
fined on p(Ck |x). The detailed procedure of how to maximize
a likelihood function with a given posterior is described in
section II-B. The classification of new data points is then
achieved by finding the class label for which the probability

p(Ck |x, θoptCk|x)

has its maximum value. In this notation, the term θoptCk|x
represents the optimal model parameters (as described in
section II-B) for predicting class Ck given the data input x.

E. Logistic regression
A commonly used example for a probabilistic discriminative

model is called logistic regression. This concept can be con-
sidered as a generalization of linear regression to a (binary)
classification problem. To our knowledge, this concept was
initially introduced by Cox in 1958 [6]. Logistic regression
algorithms are mostly used for solving binary classification
problems. Therefore, we only focus on the application of
this algorithm for two-class classification scenarios. As we
have seen in section II-A (see equation (3)), it is generally
assumed that the data noise in linear regression models follows
a Gaussian distribution. In order to transform linear regression
to a binary classification problem, it is suitable to replace the
assumption of a Gaussian distribution of the given data with
a Bernoulli distribution

Ber(n) = pn(1− p)1−n,

where n ∈ {0, 1}. This replacement is motivated by the
assumption that a Bernoulli distribution approximates the data
better than a Gaussian for a binary classification problem [13].
Apart from that, logistic regression takes a similar form as
linear regression models as it aims to approximate the given
data based on a learned weight vector w. The only decisive
difference is that after applying a weighted linear combination
on the data input, it needs to be ensured that µ(x) ∈ [0, 1]
holds for a given output transformation function µ and for
all inputs x such that the computed result can be considered
as a probabilistic value. A widely-used output transformation
function is the sigmoid function σ as described in equation
(17) as it maps the computed result to a value between zero
and one. Logistic regression then assigns a class Ck to an input
vector x based on the probability

p(Ck |x,w) = Ber(Ck |σ(w>x)). (18)

Computing the class prediction based on the highest proba-
bility is then achieved by applying the concept of maximum
likelihood estimation on equation (18).

IV. CONCLUSION

In this paper, we examined a set of basic theoretical
concepts of linear methods for classification and regression
problems that are employed by a variety of supervised learning
algorithms used in contemporary data-driven scenarios in
research and industry. We have shown that for both regression
and classification models the concept of maximum likelihood
estimation plays an essential role for the derivation and the
functionality of such models.

For linear classification models we differentiated between
probabilistic generative and probabilistic discriminative mod-
els and demonstrated the functionality of discriminative mod-
els by illustrating them with an example for a commonly used
supervised learning classifier, the logistic regression algorithm.
Considering this particular algorithm also demonstrated the
correlation between classification and regression models and
provided an example of how linear classifiers can be derived
from regression models.
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